首页> 外文OA文献 >Neural Networks Tool Condition Monitoring in Single-point Dressing Operations
【2h】

Neural Networks Tool Condition Monitoring in Single-point Dressing Operations

机译:单点修整操作中的神经网络工具状态监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cognitive modeling of tool wear progress is employed to obtain a dependable trend of tool wear curves for optimal utilization of tool life and productivity improvement, while preserving the surface integrity of the ground parts. This paper describes a method to characterize the dresser wear condition utilizing vibration signals by applying a cognitive paradigm, such as Artificial Neural Networks (ANNs). Dressing tests with a single-point dresser were performed in a surface grinding machine and tool wear measurements taken along the experiments. The results show that ANN processing offers an effective method for the monitoring of grinding wheel wear based on vibration signal analysis.
机译:使用工具磨损进度的认知建模来获得可靠的工具磨损曲线趋势,以最佳利用工具寿命并提高生产率,同时保留研磨零件的表面完整性。本文介绍了一种通过应用认知范式(例如人工神经网络(ANN))利用振动信号来表征梳妆台穿着状况的方法。在表面磨床中使用单点修整器进行修整测试,并在实验过程中进行工具磨损测量。结果表明,人工神经网络处理为基于振动信号分析的砂轮磨损监测提供了一种有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号